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1 Introduction

This report provides some hints that should help the reader understanding methodological issues underlying

the treatment of areal data for the elaboration of regional economic policy.

Economic activity is spatially concentrated. Spatial concentration generates agglomeration economies,

notably upstream-downstream linkages, which help firms become more productive. These positive effects

involve a critical mass of workers and infrastructure, and dense networks of suppliers and collaborators.

The central role of agglomeration economies on the spatial structure of the economy has inspired a large

literature focused on trying to understand their causes or origins and the dynamic of these economies,

as well as most adequate industrial policies for their consolidation and promotion wherever the industrial

agglomerations are weak or nonexistent. It has been recognized that the industrial policy objectives can

be better fulfilled if they are more sensitive to places and sectors in design and delivery (Donato, 2002;

Nathan and Overman, 2013).

Agglomeration economies may appear in different geographical scales and may involve different disag-

gregation levels, and consequently, a certain space scale is not necessarily equivalent to another (Arbia,

1989, 2001; Krugman, 1991; Arbia and Espa, 1996; Anas et al., 1998; Duranton and Overman, 2005;

Arbia et al., 2008, among others). In this report, we analyze data referring to a discrete space (lattice or

areal data regarding administrative divisions), and the boundaries cannot be ignored, given that economic

conditions can change abruptly due to changes in the tax system, in transportation costs, or to the impact

of public policies at regional and sectorial levels.

The work underlying this report handles issues related to a discrete space, i.e. a space partitioned

into a finite number of regions, along with a finite number of economic activities. The basic data have

the form Nij representing the a number of statistical units for a region i and an activity j. The labels i

of the regions are arbitrary and incorporate no information neither on spatial contiguity nor on distance

among regions. At a first stage, this analysis is “spaceless” and motivated by policy-making rather than

by spatial diffusion issues. Indeed, the data Nij provides no information about the localization of primary

units within a region. At a second stage, problems of agglomerations, i.e. of clusters of contiguous regions,

are introduced but these problems require additional data related to the distance, or contiguity, between

the regions. This topic is the object of the last section of this report.

The results of most analyses are shown in Choropleth maps which enclose additional information in

tables and graphics that are useful as a description and helps in understanding the different indexes and

algorithm outputs. A Choropleth map or an area-value map is one of the most frequently used maps in

geography (Robinson et al., 1995) which reveals data patterns by showing the distribution of a chosen

phenomenon within the selected area. In order to construct a Choropleth map, data is aggregated into

classes that are represented in the map by shades of color. The greater the density of the color, the greater

the density or value represented. While such generalization may undercover some details, it allows a quicker

observation of patterns and variation, and provides a basis for posing analytical questions.
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It is well known that when the areas or regions are not uniform, as in the case of this project which

considers the different levels of administrative and political boundaries of each country, the Choropleth

map fails to equate the visual importance of each region with its geographic area in comparison to a value

indicator, giving sparsely areas great visual emphasis. This limitation can be solved by using the method

of mesh/grid-square mapping (dividing the map into equal sized units/squares and then color each one

according to the data being encoded), or by using dot grid maps (overlying a regular grid of circles in which

each is sized accordingly to the value of the region the circle falls into), among others (for more details

about these topics see Thompson et al. 1999; Bertin 2010; Liseikin 2010). In the following stages of the

project it is foreseen to incorporate the aforementioned grid methods as an optional visualization of the

results.

Next section gives a (slightly formal) description of the data to be analyzed along with some notational

convention. Section 3 presents an overview of the main topics that are studied in this Atlas, namely the

basic concepts around the regional specialization and the industrial concentration. This section is completed

by introducing different indices useful for characterizing the manufacturing structure of the regions. The

following section briefly explains the method to analyze the Regional Manufacturing Structure of the

countries by a simultaneous grouping of regions and activities algorithm; the interested reader may find

a more complete exposition in Haedo and Mouchart (2014). The last section briefly sketches a definition

and a method for detecting Specialized Agglomerations, again the interested reader may find a more

complete exposition in Haedo and Mouchart (2015); and ends with the explanation of the Manufacturing

Competitiveness index.

2 Structure of the data and notation for the regions

This report treats data that refer to different countries of Latin America and the Caribbean. All these data

share a similar structure. More specifically, for a given country, let us consider a finite set of administrative

regions i ∈ I = {1, ..., I}, and a finite set of activities j ∈ J = {1, ..., J}. The administrative nature of

the regions refers to two aspects. Firstly, the number of regions is finite. Secondly, the boundaries of the

regions are designed exogenously, i.e. independently of the problem under analysis; in particular the areas

of the different regions are typically quite heterogeneous. Furthermore, this administrative nature of the

regions is crucial for the availability of the data. It is to be noted that the labels, i ∈ I and j ∈ J , are

“not informative”, meaning that the labeling system is arbitrary and does not embody any information.

For each pair (i, j) ∈ I×J , we observe the number Nij of primary units; these could be typically a number

of manufacturing employees or a number of manufacturing economic units. Thus we obtain a two-way I×J

contingency table N = [Nij ] that also produces row, column and table totals denoted as follows:

Ni· =
∑J

j=1
Nij ; N·j =

∑I

i=1
Nij ; N·· =

∑I

i=1

∑J

j=1
Nij =

∑J

j=1
N·j =

∑I

i=1
Ni· (1)
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This report is mostly concerned with the relative industrial concentration, i.e. the concentration of a given

activity in a given region relatively to other regions and with the relative regional specialization, i.e. the

shares of the different activities in a given region as compared that those shares at the country level.

Following Haedo and Mouchart (2012), the basic tools for these analyses are derived from the profiles

provided by the contingency table N = [Nij ]; more explicitly:

• region i may be characterized by the profile (or conditional distribution) of the i-th row 1:

p~j|i = (p1|i, · · · , pj|i, · · · , pJ|i) pj|i =
Nij
Ni·

(2)

to be compared with the global row profile (or marginal distribution):

p·~j = (p·1, · · · , p·j , · · · , p·J) p·j =
N·j
N··

(3)

• similarly, activity j may be characterized by the profile (or conditional distribution) of the j-th

column:

p~i|j = (p1|j , · · · , pi|j , · · · , pI|j) pi|j =
Nij
N·j

(4)

to be compared with the global column profile (or marginal distribution):

p~i· = (p1·, · · · , pi·, · · · , pI·) pi· =
Ni·
N··

(5)

A high proportion of the data used in this work are presented in the form of these profiles, or conditional

distributions, as a natural way of representing the regional structure of an industry or the industrial

structure of a region.

For later use, it may be convenient to refer to the areas rather than to the (arbitrary) labels of the

regions. Thus we also denote the country, considered as an area, as Ω and the disjoint regions as Ωi.

Evidently, the regions Ωi provide a partition of the country Ω:

Ωi 6= ∅ Ωi ∩ Ωi′ = ∅ (i 6= i′)

I⋃
i=1

Ωi = Ω (6)

We accordingly write:

pi· = p(Ωi) (7)

The analysis may be conducted in terms of the N·· primary units labeled by u, i.e. u ∈ U with #(U) = N··

along with a localization function ` : U → Ω where `(u) stands for the localization of u in Ω and an activity

function a : U → J where a(u) stands for the activity of the primary unit u. For each pair (i, j), the

primary unit u is associated with a binary variable:

xuij = 1I{`(u)∈Ωi, a(u)=j} (8)

1When the components of a vector are indexed by i (regions) or by j (activities), we use an arrow above the index that

defines the components of the vector.
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Clearly: ∑
u∈U

xuij = Nij (9)

Cartographic data

Country maps cover three levels of administrative and political boundaries: national administrative bound-

aries and first and second levels of sub-national administrative boundaries (for more details about the

administrative and political boundaries of each country used in this project, see “Fuentes de datos/Data

sources” in the bar menu of the project’s website).

Manufacturing activities

The manufacturing activities for each country have been homologated in 21 divisions (Table 1) of the

International Standard Industrial Classification of All Economic Activities (ISIC) Revision 4 of the United

Nations (http://unstats.un.org/unsd/cr/registry/regcst.asp?Cl=17&Lg=1) as follows:

Table 1: Homologated manufacturing activities

Divisions
Description

ISIC Rev.4

10 − 11 Manufacture of food products; Manufacture of beverages

12 Manufacture of tobacco products

13 Manufacture of textiles

14 Manufacture of wearing apparel

15 Manufacture of leather and related products

Manufacture of wood and of products of wood and cork, except furniture;
16

manufacture of articles of straw and plaiting materials

17 Manufacture of paper and paper products

18 Printing and reproduction of recorded media

19 Manufacture of coke and refined petroleum products

Manufacture of chemicals and chemical products; Manufacture of basic
20 − 21

pharmaceutical products and pharmaceutical preparations

22 Manufacture of rubber and plastics products

23 Manufacture of other non-metallic mineral products

24 Manufacture of basic metals

25 Manufacture of fabricated metal products, except machinery and equipment

26 Manufacture of computer, electronic and optical products

27 Manufacture of electrical equipment

Manufacture of machinery and equipment n.e.c.; Repair and installation
28 − 33

of machinery and equipment

29 Manufacture of motor vehicles, trailers and semi-trailers

30 Manufacture of other transport equipment

31 − 32 Manufacture of furniture; Other manufacturing

38 Waste collection, treatment and disposal activities; materials recovery
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3 Regional manufacturing indicators

The evaluation of regional characteristics and performances can be facilitated by a reference to different

indices. In the sequel, we shall use in particular the following ones.

The data classification method adopted to construct the Choropleth maps is the Fisher-Jenks optimiza-

tion method, also called the Jenks Natural Breaks (Jenks, 1967). Jenks’ method is the one-dimensional

version of K-means clustering (Forgy, 1965). This data clustering method calculates groupings of data

values based on the data distribution, seeking to reduce the variance within groups and maximize the

variance between groups. The advantage of this classification is that it identifies real classes within the

data. For more details about cluster analysis see Hartigan (1975), Kaufman and Rousseeuw (2005), Gan

et al. (2007), Everitt et al. (2010), Aggarwal and Reddy (2013), among many others.

3.1 Specialization and concentration: basic concepts

3.1.1 General approach

The practitioner may like to be reminded that the analysis of specialization and of concentration raises, at

the conceptual level, two different issues to be carefully distinguished.

One issue consists in characterizing the dispersion, or concentration, of distributions on unordered

categorical variables such as regions or activities. In the theory of information it is established that the

distribution of maximal dispersion, or minimal concentration, is the uniform distribution; for instance, on

the regions it would be: P (i) = 1
I i = 1, 2, · · · I. A measure of dispersion may accordingly be obtained

though a measure of the discrepancy (i.e. a distance or a divergence, see below) between the uniform

distribution, taken as a benchmark of maximal dispersion, and the distribution of interest. A possible

alternative approach is to introduce an order, “natural” or artificial, among the categories and to rely on

methods based on Lorentz curve and Gini coefficients. In most cases, however, the ordering is defined only

relatively to the distribution to be analyzed and is therefore not intrinsic to the set of possible categories.

In this book, we generally give preference to the first approach.

Another issue is to focus the attention on one among three possible levels of analysis. A first level, to be

called an absolute concept (of specialization or of concentration), analyzes the dispersion of a distribution

in itself without reference to the contingency with another variable. We then obtain absolute concepts of

specialization or of concentration, either for a whole country or for a specific region i or a specific activity

j. A second level, to be called a relative concept (of specialization or of concentration), confronts the

conditional distribution of the activities within a region with the marginal distribution of the activities for

the country, taken as a benchmark of no relative specialization, or the conditional distribution of the regions

for a given activity with the marginal distribution of the regions for the country, taken as a benchmark

of no relative concentration. A third level, to be called a global concept confronts the actual bivariate

distribution, on regions × activities, with the product of their marginal distributions that represents
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the closest distribution revealing independence between regions and activities, taken as a benchmark of a

completely non-concentrated, or non-specialized, country. This measure may be called a measure of “global

localization” or, following Perroux (1950), of “polarization”; this book uses both terms interchangeably.

In Table 2 we have summarized, under some conventional headings, these different levels of analysis,

denoting by d(p | q) an arbitrary divergence or distance between distributions p and q.

Table 2: Some conventional definitions

Technique Measured concept

d(p·~j | [1/J ]) Absolute industrial homogeneity

d(p~i· | [1/I]) Absolute regional homogeneity

d(p~j|i | [1/J ]) Absolute specialization of region i

d(p~i|j | [1/I]) Absolute concentration of activity j

d(p~j|i | p·~j) Relative specialization of region i

d(p~i|j | p~i·) Relative concentration of activity j

d([pij ] | [pi· p·j ]) Global localization, or polarization, of the country

Absolute homogeneity refers to the spread of the (marginal) distribution of the regions p~i· or of the

activities p·~j . Absolute regional specialization, is a feature of the distribution of activities across a region

p~j|i, and a region is said to be absolutely specialized if a few activities concentrate a large share of the region.

This may be the case, for instance, when an activity is considerably larger than others at a country level.

Relative regional specialization of a region shows up when an area has a greater proportion of a particular

activity than the proportion of that activity in the whole territory. In other words, relative regional

specialization compares an area share of a particular activity with the activity share at the country level,

and is accordingly measured through a discrepancy d(p~j|i | p·~j), thus relatively to the marginal distribution

p·~j . The similar comment is also valid for absolute and relative industrial concentration.

In order to introduce the concept of global localization or polarization, imagine the following (artificial)

experiment. Draw randomly one primary unit from the N·· ones and classify the drawn primary unit into

the region and the activity. The probability of drawing a primary unit from the cell (i, j) is evidently

pij . Within this framework, the absence of global localization may be viewed as a stochastic independence

between the row and the column criteria: for instance, in every region, there would be a same probability

that a randomly drawn individual is active in any specific activity. Thus, global localization may be viewed

as an association between the region and the activity variables. This suggests to measure the degree of

global localization through a statistic that might be used for testing independence in a contingency table:

this is precisely operated by the discrepancy d([pij ] | [pi· p·j ]).
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Remark

These concepts are based only on information contained in the contingency table. In some cases, it may be

of interest to use as a benchmark distribution a distribution relative to an exogenous variable. For instance,

for distributions on the regions, such as p~i or p~i|j , a benchmark distribution might be the distribution of

the areas or of the populations of the regions. For instance, Mori and Smith (2011) have proposed that the

benchmark of the areas might be used as a basis for an hypothesis of a purely non concentrated activity.

Similarly, the distribution of the populations of the regions may be used, in epidemiology, as a benchmark

for the non-concentration of a disease of interest.

3.1.2 An additional note on international comparisons

When comparing the regional structure of several countries, the divergences, shown up in Table 2, are eval-

uated country-wise. It should be emphasized that these comparisons may crucially depend on the choice of

a particular discrepancy, or dissimilarity, among distributions. This work makes reference to three discrep-

ancies of particular interest, namely the Hellinger distance and the Kulback-Leibler and χ2 divergences. In

the finite case of two distributions q = (q1, · · · , qn) and r = (r1, · · · , rn), these discrepancies are defined

as follows:

d2
H(q~i | r~i) =

1

2

∑I

i=1
(
√
qi −

√
ri)

2 Hellinger-distance (10)

dχ2(q~i | r~i) =
∑I

i=1
ri

(
qi
ri
− 1

)2

χ2 − divergence, or inertia (11)

dKL(q~i | r~i) =
∑I

i=1
qi log

(
qi
ri

)
Kullback-Leibler divergence (12)

Experience shows that the ranking among regions or activities may be robust with respect to changes of

the discrepancy in some cases but may also crucially depend on it in other cases. However, the ranking of

the measures of polarization is generally robust. For some interesting examples, see Haedo and Mouchart

(2012).

3.1.3 Local approach

A natural start for the analysis of relative concepts is a local one, where one examines whether a cell

(i, j) reveals over- or under-specialization, or equivalently whether a cell (i, j) reveals over- or under-

concentration. For this purpose, the well-established Location Quotient (Florence, 1939), also known as

the (estimated) Hoover-Balassa coefficient for the cell (i, j), may be written in several equivalent forms as:

LQij =
Nij/Ni·
N·j/N··

=
Nij/N·j
Ni·/N··

=
NijN··
Ni·N·j

=
pij

pi· p·j
=
pj|i

p·j
=
pi|j

pi·
(13)

The last three equalities in (13) express the same concept through proportions, i.e. independently of

N·· that represents the number of observations.
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This location quotient reveals the following feature of activity j in region i:

LQij = 1 or pij = pi· p·j non-specialization

> 1 or pij > pi· p·j over-specialization

< 1 or pij < pi· p·j under-specialization (14)

where “non-specialization” corresponds to a local contribution to the row-column independence. It should

be clear from (14) that a discrepancy between the distributions [pij ] and [pi· p·j ] is equivalent to a dis-

crepancy between the matrix [LQij ] and a corresponding matrix of one’s. Note that LQij is valued in

[0,+∞) and that pi· p·j > 0. The last two equalities in (13) emphasize that the specialization is an issue

concerning the global structure at a country level: thus the absence of specialization of a cell (i, j) means

that, relative to the distribution in the country, activity j is not over-(nor under-) represented in region i

and that region i is not over-(nor under-) represented for activity j. Thus, “location” points to the fact

that LQij is localized in the cell (i, j).

Remark.

Recent works, among others by Moineddin et al.(2003), O’Donoghue and Gleave (2004), Guimarães et

al.(2003 and 2009) or Haedo (2009), have drawn the attention on the so-called “small area problem” for

the location quotient. Indeed, when a region i is very small, as compared with other regions of a country,

the value of its location quotient may not be put on an equal foot with the location quotients relative

to other regions. In Section 5.3, we shall weight the log of the location quotient with the corresponding

Nij , see equation (78), with the effect of representing more adequately the impact of a small area in the

characterization of the relative industrial concentration of a given activity.

Manufacturing regional specialization

For each country, we have been evaluated the regional specialization of each region i, Mre[i·], for both

primary units: manufacturing economic units, [Meuij ], and manufacturing employment, [Memij ].

Mre[i·] =
∑J

j=1
pij log

(
pij

pi· p·j

)
(15)

And for international comparisons of the global regional specialization or global localization levels:

Mre =
∑I

i=1

∑J

j=1
pij log

(
pij

pi· p·j

)
(16)

The Choropleth maps for each country show the values of Mre[i·][Meuij ] and Mre[i·][Memij ], both

at last available period, grouping the over-specialized regions i into three classes: high, medium and low,

using the Jenks Natural Breaks classification method.
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Regional concentration of manufacturing activities

For each country, we have been evaluated the regional concentration of each activity j separately, Mrcij ,

for both primary units: manufacturing economic units, [Meuij ], and manufacturing employment, [Memij ],

as follows

Mrcij = pij log

(
pij

pi· p·j

)
(17)

And for international comparison of the regional concentration of every single activity j,

Mrc[·j] =
∑I

i=1
pij log

(
pij

pi· p·j

)
(18)

The Choropleth maps of each country show the values of Mrcij [Meuij ] and Mrcij [Memij ] for each

activity j separately, both at last available period, grouping the over-specialized regions i into three classes:

high, medium and low, using the Jenks Natural Breaks classification method.

3.2 Further indicators

Population

For each country, the number of people, either for a country, Pop, or for a region i, Popi, are evaluated as

follows:

Pop =
∑I

i=1
Popi (19)

The Choropleth map of each country shows the values of Popi at last available period, aggregated into

three classes: high, medium and low, using Jenks Natural Breaks classification method.

Relative Variation of the Population

For each country, the relative variation of the number of people, either for Pop or for Popi, has been

evaluated by computing its values at two different instants, namely t1 and t2 with t1 < t2, as follows:

RV Popi|t1,t2 =

(
Popi|t2
Popi|t1

− 1

)
× 100 (20)

RV Popt1,t2 =

(∑I

i=1

Popi|t2
Popi|t1

− 1

)
× 100. (21)

The Choropleth map of each country shows the values of RV Popi|t1,t2 , aggregated into three classes:

increased, no changes and decreased.
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Manufacturing economic units

For each country and for each pair (i, j) ∈ I × J , one may evaluate the number Meuij of manufacturing

economic units. Thus we obtain a two-way I × J contingency table N = [Meuij ] that also produces row,

column and table totals denoted as follows:

Meui· =
∑J

j=1
Meuij (22)

Meu·j =
∑I

i=1
Meuij (23)

Meu =
∑I

i=1

∑J

j=1
Meuij =

∑I

i=1
Meui· =

∑J

j=1
Meu·j (24)

The Choropleth maps of each country show the values of Meui· and of Meu·j separately for each activity

j, both at last available period, aggregated into three classes: high, medium and low, using the Jenks

Natural Breaks classification method.

Relative Variation of the Manufacturing economic units

For each country, the relative variation of the manufacturing economic units has been evaluated by com-

puting N = [Meuij ] at two different instants, t1 and t2 with t1 < t2, as follows:

RVMeuij|t1,t2 =

(
Meuij|t2
Meuij|t1

− 1

)
× 100 (25)

RVMeu[i·]|t1,t2 =

(∑J

j=1

Meuij|t2
Meuij|t1

− 1

)
× 100 (26)

RVMeu[·j]|t1,t2 =

(∑I

i=1

Meuij|t2
Meuij|t1

− 1

)
× 100 (27)

RVMeut1,t2 =

(∑I

i=1

∑J

j=1

Meuij|t2
Meuij|t1

− 1

)
× 100 (28)

The Choropleth maps of each country show the values of RVMeu[i·]|t1,t2 and of RVMeu[·j]|t1,t2 sepa-

rately for each activity j, aggregated into three classes: increased, no changes and decreased.

Manufacturing availability of local enterprise resources

For each region i of a country, one may evaluate the manufacturing availability of local enterprise resources,

Maler[i·], as the ratio between the manufacturing economic units, Meui·, and the population, Popi:

Maler[i·] =
Meui·
Popi

(29)

The Choropleth map of each country shows the values of Maler[i·] at last available period, aggregated into

three classes: high, medium and low, using Jenks Natural Breaks classification method.
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Manufacturing employment

For each country and for each pair (i, j) ∈ I × J , we observe the number Memij of manufacturing jobs

held. Thus we obtain a two-way I × J contingency table N = [Memij ] that also produces row, column

and table totals denoted as follows:

Memi· =
∑J

j=1
Memij (30)

Mem·j =
∑I

i=1
Memij (31)

Mem =
∑I

i=1

∑J

j=1
Memij =

∑I

i=1
Memi· =

∑J

j=1
Mem·j (32)

The Choropleth maps of each country show the values of Memi· and of Mem·j separately for each

activity j, both at last available period, aggregated into three classes: high, medium and low, using the

Jenks Natural Breaks classification method.

Relative Variation of the Manufacturing employment

For each country, the relative variation of the manufacturing jobs held has been calculated by computing

N = [Memij ] at two different instants, t1 and t2 with t1 < t2, as follows:

RVMemij|t1,t2 =

(
Memij|t2
Memij|t1

− 1

)
× 100 (33)

RVMem[i·]|t1,t2 =

(∑J

j=1

Memij|t2
Memij|t1

− 1

)
× 100 (34)

RVMem[·j]|t1,t2 =

(∑I

i=1

Memij|t2
Memij|t1

− 1

)
× 100 (35)

RVMemt1,t2 =

(∑I

i=1

∑J

j=1

Memij|t2
Memij|t1

− 1

)
× 100 (36)

The Choropleth maps of each country show the values of RVMem[i·]|t1,t2 and of RVMem[·j]|t1,t2 sep-

arately for each activity j, aggregated into three classes: increased, no changes and decreased.

Manufacturing quality of local enterprise resources

For each region i of a country, one may evaluate the manufacturing quality of local enterprise resources,

Mqler[i·], as the ratio between the manufacturing employment, Memi·, and the manufacturing economic

units, Meui·:

Mqler[i·] =
Memi·

Meui·
(37)

The Choropleth map of each country shows the values of Mqler[i·] at last available period, aggregated into

three classes: high, medium and low, using the Jenks Natural Breaks classification method.
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Manufacturing level

For each region i of a country, one may evaluate a manufacturing level, Ml[i·], as the ratio of the rate of

manufacturing employment in region i and the corresponding rate for the country:

Ml[i·] =

Memi·
Popi
Mem
Pop

(38)

The Choropleth map of each country shows the values of Ml[i·] at last available period, aggregated into

three classes: high, medium and low, using the Jenks Natural Breaks classification method.

Manufacturing performance

For each region i of a country, the manufacturing level, Ml[i·], may be evaluated by computing its Ml[i·]

at two different instants, t1 and t2 with t1 < t2. Hence, the Mp[i·] distinguish between different scenarios

or classes of Ml[i·]|t1,t2 as follows:

1 = raising industrialized regions, when Ml[i·]|t2 > Ml[i·]|t1 > 1;

2 = declining industrialized regions, when Ml[i·]|t1 > Ml[i·]|t2 > 1;

3 = new industrialized regions, when Ml[i·]|t2 > 1 > Ml[i·]|t1 ;

4 = desindustrializing regions, when Ml[i·]|t1 > 1 > Ml[i·]|t2 ;

5 = developing industrialized regions, when 1 > Ml[i·]|t2 > 0.60, and Ml[i·]|t2 > Ml[i·]|t1 ;

6 = unindustrialized regions, when 0.60 > max{Ml[i·]|t1 ,Ml[i·]|t2}.

where the threshold value 0.60 is somewhat arbitrary but aimed at indicating a movement of clear signifi-

cance.

The Choropleth maps of each country show the classes of Mp[i·].

4 Regional manufacturing structure: simultaneous grouping of

regions and activities

4.1 Background

The purpose of this section is to extend in two directions the usual analysis of a given contingency table.

Firstly, we want to examine simultaneous groupings of regions and activities, rather than separate ones.

Secondly, instead of considering arbitrarily pre-specified groupings we look for an automatic construction

of grouping aimed at providing optimal groupings according to a pre-specified criterion. From an economic

geography point of view, the discrepancy d([pij ] | [pi· p·j ]), taken as a measure of polarization, or global

localization, of the country, summarizes the spatial pattern of the economic activities, or equivalently the

distribution of the activities among the regions. We aim to simultaneously regroup regions with a similar
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manufacturing structure in terms of relative sub- and over-specialization and activities with a similar

spatial pattern in terms of relative sub- or over-concentration. Shortly said, we want to build an algorithm

for an automatic summary of a possibly large regions × activities contingency table that keeps (almost)

unchanged the polarization of the economy.

When the algorithm looks for collapsing regions or activities, no restriction is considered about the

regions or the activities to be clusterized. Thus, for the regions, no criteria of contiguity, or of some

distance-based pattern, is operating because the algorithm is not looking for agglomerations, in the sense

of clustering “neighboring” regions. The clusters to be elicited are of a structural nature, i.e. clusters of

regions with a similar relative regional specialization pattern, or similar sectorial structure, irrespectively

of their geographical localization. Similarly, when collapsing activities, no consideration of inter-sectorial

relationship, nor of value chain, is operating because only a similar relative manufacturing concentration

is at stake.

Our purpose is to summarize the original information, i.e. the complete contingency table N = [Nij ],

to extract the most relevant patterns of specialization in the data. The actual challenge should be kept

in mind. In the case of Argentina, for instance, there are I = 511 regions. Using the homologated

manufacturing activities of Table 1 there are J = 21 activities. In 2004, for example, the total number of

manufacturing employees was N = 955, 965. Thus the contingency table is a 511 × 21 matrix of 955,965

primary units spread in 10,731 cells. It should be expected that many cells have either a very small

number of manufacturing employees or no employee at all. The skeleton of the proposed algorithm may

be viewed as follows. An “optimal” grouping of regions and activities should compromise between two

opposite desiderata: the collapsed table should be as small as possible but should also display a minimum

loss of polarization of the country.

Collapsing tables means building tables of smaller dimension through aggregated regions (rows) and/or

activities (columns). The total number M of possible collapsed tables2 for the I × J matrix N is

M =
∑

(m1...mi...ml)

(
I

m1 . . .mi . . .ml

)
×
∑

(n1...ni...nk)

(
J

n1 . . . nj . . . nk

)
(39)

where l 6 I − 1, k 6 J − 1, m1 + . . .+mi + . . .+ml < I and n1 + . . .+ nj + . . .+ nk < J .

For I and J large, as in the present case, M is huge and trying all possibilities is not feasible. Therefore,

we look for a greedy algorithm that only ensures a local optimum. This is obtained by means of a technique

of hierarchical clustering, according to a dendrogram approach, combined with a correspondence analysis.

Finally, at each step of the tree, permutation bootstrapping is used as a test that the envisaged regrouping

performs better than if it had been generated randomly.

2Equation (39) may also be written as a product of two Bell numbers Bn =
∑

(m1...mi...ml)

( n
m1...mi...ml

)
=
∑

0≤k≤n

(n
k

)
where l 6 n − 1, m1 + . . . + mi + . . . + ml < n. The Bell number is the sum of Stirling numbers of the second kind S(n, k)

that are equal to the number of partitions with k elements of a set with n members. Thus, the Bell number represents the

total number of partitions of a set of n elements. In equation (39), we have n = I and m = J . More details may be found in

Rota (1964), Gardner (1978), Branson (2000) or Sloane (2001).

15



4.2 Singular value decomposition

Correspondence Analysis is based on a classical result in matrix theory, namely the Singular Value De-

composition (SVD). Let P = N
N··

be the probability matrix corresponding to N. Let r = (pi·) the vector

of row marginals and c = (p·j) the vector of column marginals. Let Dr and Dc be the diagonal matrices

formed with the row marginals and column marginals, respectively. Let us also consider the matrix of the

residuals: R = P− rc′ = [pij − pi·p·j ] and the matrix of the standardized residuals:

S = D−1/2
r RD−1/2

c sij =
pij − pi·p·j√

pi·p·j
. (40)

A SVD of S may be written as:

S = UDλV
′ (41)

where λ = (λ1, . . . , λK) is the vector of the strictly positive singular values, or eigenvalues, of S organized

in descending order: λ1 ≥ λ2 ≥ · · · ≥ λK > 0 with K = min(I − 1, J − 1), and where Dλ is accordingly

K ×K, moreover U′U = V′V = I(K). In this decomposition, the dimension of U is I ×K, of V is J ×K.

The SVD of S will be used in the following spirit. Let us consider Dλ(m) be the principal submatrix

of Dλ corresponding to the first m eigenvalues λk, let U(m) and V(m) be the submatrices made of the

first m columns of U and V, respectively. The least-squares rank m approximation of S is obtained as:

S(m) = U(m) Dλ(m) V′(m) (Eckart-Young theorem). Thus the sequence S(m) m = 1, . . . ,K is a sequence

of improved approximations of S.

The χ2-divergence between [pij ] and [pi·p·j ], or Total Inertia, may be written as:

dχ2([pij ] | [pi· p·j ]) = φ2 =

I∑
i=1

J∑
j=1

(pij − pi·p·j)
2

pi·p·j
= trS′S =

K∑
k=1

λ2
k (42)

where λ2
k also represents the k-th eigenvalues of S′S. This inertia, being a measure of the polarization of

the country, may be viewed as a global measure of the information provided by the contingency table P.

The principal coordinates for the rows (regions) are:

F = D−1/2
r U Dλ = [fik] I ×K fik = p

−1/2
i· λk uik (43)

where fik represents the score of region i in the k-th dimension of the factor space IRK . Later on, we shall

systematically use the decomposition of F into its I-dimensional columns denoted3 as F = [f~i1, · · · , f~iK ].

It may be checked that:

F′DrF = D2
λ i .e.

∑
1≤i≤I

pi·f
2
ik = λ2

k (44)

Thus, equation (44) decomposes the k-th eigenvalue of S′S, also the k-th component of the inertia, according

to the contribution of each region i, namely Ii = pi·f
2
ik.

3When the components of a vector are indexed by i (regions) or by j (activities), we use an arrow above the index that

defines the components of the vector.
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Similarly, the principal coordinates for the columns (activities) are:

G = D−1/2
c V Dλ = [gjk] J ×K gjk = p

−1/2
·j λk vjk (45)

where gjk represents the score of activity j in the k-th dimension of the factor space IRK . Similarly, the

decomposition of G into its J-dimensional columns is denoted as G = [g~j1, · · · , g~jK ]. Here also:

G′DcG = D2
λ i .e.

∑
j

p·jg
2
jk = λ2

k (46)

Thus, equation (46) decomposes the k-th eigenvalue of S′S according to the contribution of each activity

j, where Ij = p·jg
2
jk measures the contribution of the activity j.

Summarizing, the SVD of S provides a decomposition of the total polarization φ2 in terms of the

contributions of each factor k and of the contribution of the regions i, respectively the activities j:

φ2 =
∑
i

Ii =
∑
i

∑
k

pi· f
2
ik =

∑
j

Ij =
∑
j

∑
k

p·j g
2
jk (47)

For more details, see Mardia et al.(1979), Jobson (1992) and Greenacre (2007).

Let us write the rows and columns profiles as follows:

D−1
r P =

[
pij
pi·

]
= [pj|i] P D−1

c =

[
pij
p·j

]
= [pi|j ] (48)

Comparing, by means of a divergence, a profile with the corresponding marginal distribution provides a

measure of relative specialization of region i and of relative industrial concentration of activity j:

dχ2(p~j|i | p·~j) =
∑
j

(pj|i − p·j)
2

p·j
= [p~j|i − p·~j ]

′D−1
c [p~j|i − p·~j ] =

∑
k

f2
ik (49)

dχ2(p~i|j | p~i·) =
∑
i

(pi|j − pi·)
2

pi·
= [p~i|j − p~i·]

′D−1
r [p~i|j − p~i·] =

∑
k

g2
jk (50)

Therefore, the decomposition of the Total inertia as a measure of polarization, in (47), may also be written

in terms of average relative concentration or specialization:

φ2 =
∑
i

pi· dχ2(p~j|i | p·~j) =
∑
j

p·j dχ2(p~i|j | p~i·) (51)

Equations (42) and (51) may also be interpreted in terms of divergences between row or columns profiles,

or conditional distributions. More details, under a stochastic independence approach, are given in Haedo

and Mouchart (2012).

4.3 Best collapsed table: the algorithm

Background

The concept of distance between regions or activities is provided by means of a “square of weighted Eu-

clidean distances” (Greenacre 2011) among profiles.

17



Thus, the similarity between the profiles of two regions i and i′ or two activities j and j′ is measured

as follows: ∑
j

1

p·j

(
pij
pi·
− pi′j

pi′·

)2

=
∑
j

1

p·j

(
pj|i − pj|i′

)2
= [p~j|i − p~j|i′ ]

′D−1
c [p~j|i − p~j|i′ ] (52)

∑
i

1

pi·

(
pij
p·j
− pij′

p·j′

)2

=
∑
i

1

pi·

(
pi|j − pi|j′

)2
= [p~i|j − p~i|j′ ]

′D−1
r [p~i|j − p~i|j′ ] (53)

The polarization of an economy decreases as a consequence of clustering and this loss of information is

reduced by clustering the most similar regions or activities. Thus the algorithm chooses pairs of regions i

and i′ and pairs of activities j and j′ minimizing the measures of dissimilarity (52) and (53).

Following Ward (1963)’s approach, the pair of regions (i, i′) that gives the least decrease in inertia is

identified by the pair of rows (i, i′) which minimize the following measure:

pi· pi′·
pi· + pi′·

∑
j

1

p·j

(
pj|i − pj|i′

)2
=

pi· pi′·
pi· + pi′·

[p~j|i − p~j|i′ ]
′D−1

c [p~j|i − p~j|i′ ] (54)

The selected two rows are then merged by summing their frequencies and the profile and mass are

recalculated. The same measure of difference as (54) is calculated at each stage of the clustering. We also

operate similarly for merging two columns.

A collapsed table is characterized by two partitions: a partition I∗ of the rows and a partition J∗ of the

columns. Thus a collapsed table is noted as TI∗×J∗ and is obtained by merging the rows and the columns

of the original table according to the relevant partitions.

Hierarchical clustering, of the rows or of the columns, generates a nested sequence of (I + 1) partitions

of the rows and (J + 1) partitions of the columns, with the first and the last ones being:

I(0) = {{1}, {2}, . . . , {I}} J (0) = {{1}, {2}, . . . , {J}} (55)

I(I) = {{1, 2, . . . , I}} J (J) = {{1, 2, . . . , J}} (56)

The other not extreme (I − 1) and (J − 1) partitions corresponds to the levels of a dendrogram.

In this section, we give the essentials of this algorithm. We shall use the example, in next section, to

provide further details on the working of the algorithm.

First step: building collapsed tables.

Work on the rows. For k = 1, 2, . . . ,K:

Consider the first k columns of F, let F(k) = (f~i1, . . . , f~il, . . . , f~ik) I × k, where f~il represents the l-th

column of F, and obtain a dendrogram through a hierarchical clustering of the rows of F(k), corresponding
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to the rows of S, as follows. Let I(n,k) n = 0, . . . , I, with ∀k : I(0,k) = I(0) and I(I,k) = I(I), be the

nested sequence of partitions of regions, starting with I(0) and with each following cluster obtained as

an optimized clustering scheme based on I(n−1,k). Thus ∀k, there are only I − 1 relevant levels of the

hierarchical clustering.

Work on the columns. For k = 1, 2, . . . ,K:

Repeat the same with the columns of G, namely G(k) = (g~j1, . . . , g~jl, . . . , g~jk) J × k where g~il represents

the l-th column of G, and obtain a dendrogram through a hierarchical clustering of the rows of G(k),

corresponding to the columns of S, as follows. Let J (m,k) m = 0, . . . , J , with ∀k : J (0,k) = J (0)

and J (J,k) = J (J), be the nested sequence of partitions of activities, starting with J (0) and with each

following cluster obtained as an optimized clustering scheme based on J (m−1,k). Thus ∀k, there are only

J − 1 relevant levels of the hierarchical clustering.

Building collapsed tables.

For each level of the rows and columns dendrograms, build the (I−1)× (J−1) collapsed tables T
(k)
In,k×Jm,k

and calculate the corresponding inertia φ2
(
T

(k)
In,k×Jm,k

)
.

Second step: identifying an optimal collapsed table.

Having built the array A of #(A) = (I − 1)(J − 1)K collapsed tables, the final question is: which of the

collapsed tables is better in the sense of a best compromise between a smallest table that preserves the

highest polarization (i.e. association) possible? Permutation bootstrapping provides a tool for a suitable

compromise.

Bootstrapping.

Let us consider whether a particular table T
(k)
In,k×Jm,k

is “best” in the sense alluded above. At least, we

should check that this table is not dominated by a table obtained through a random shuffling of the labels

(of rows and/or of columns) based on a same level of the dendrogram. The optimized tables from the

dendrograms are completely identified by the three characteristics (n,m, k). Here, In,k is a partition I

with I − n elements, let {I1, . . . , II−n}. Let πr be a permutation defined on I, i.e. πr : I → I, bijective

and let us write πr(In,k) for the image of the partition In,k transformed by πr. Similarly, let πc be a

permutation defined on J and its image πc(Jm,k). Given (πr, πc), one may define a transformed table

T
(k)
πr(In,k)×πc(Jm,k), following the same partition scheme as the optimized table T

(k)
In,k×Jm,k

with shuffled

labels, and compute a corresponding inertia φ2
(
T

(k)
πr(In,k)×πc(Jm,k)

)
. Note that the transformed table

T
(k)
πr(In,k)×πc(Jm,k) has a same dimension as T

(k)
In,k×Jm,k

; thus their inertia are comparable. The difference

φ2
(
T

(k)
In,k×Jm,k

)
− φ2

(
T

(k)
πr(In,k)×πc(Jm,k)

)
is an effect of the label shufllings of the rows and of the columns.

The permutation bootstrap is obtained by generating randomly the permutations (πr, πc) and evaluates

the average, denoted as IE B , of the corresponding inertia. The difference

ψ(n,m, k) = φ2
(
T

(k)
In,k×Jm,k

)
− IE B φ

2
[
T

(k)
πr(In,k)×πc(Jm,k

]
(57)
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represents how much the optimized table has gained, in inertia, relatively to a table with a same cluster

scheme but with randomly shuffled individuals and variables. The algorithm terminates by defining the

best collapsed table, In∗,k∗ × Jm∗,k∗ through the solution of the maximization problem:

(n∗,m∗, k∗) = argmaxn,m,k ψ(n,m, k), (58)

balancing by so-doing the trade-off between the association degree and the table dimension.

Remark. In general, a clustering of a table involves a loss of information, measured by a decrease of the

inertia. In the extreme cases, TI(I)×J(J)
is a 1 × 1 table representing a maximum level of clustering and

maximum loss of information, whereas TI(0)×J(0)
is a I × J table representing the original table with no

loss of information. In both cases, bootstrapping is irrelevant.

Finally, the Choropleth map of each country shows the grouped regions (g-regions) obtained from the

optimal collapsed table at the last available period of the data.

5 Identification of specialized agglomerations

This section develops new statistical and computational methods for the automatic detection of agglom-

erations displaying an over- or under- relative specialization spatial pattern. A probability model is used

to provide a basis for a space partition into clusters representing homogeneous portions of space as far as

the probability of locating a economic unit is concerned. A cluster made of contiguous regions is called an

agglomeration. A greedy algorithm detects specialized agglomerations through a model selection criteria.

A random permutation test evaluates whether the contiguity property is significant. As a preliminary step

we first present the notation for clusters of regions.

5.1 Notation for clusters of regions

Let us operate a partition of the I regions into M “grouped regions”, to be called “g-regions” for the ease

of exposition. This regrouping may be written in terms of the labels:

I = {1, 2, · · · , I} =

M⋃
m=1

Im Im ∩ Im′ = ∅ (m 6= m′) #(Im) = Im
∑
m

Im = I (59)

Let us define accordingly

Nm· =
∑
i∈Im

Ni· Nm,j =
∑
i∈Im

Nij (60)

Using g to denote relative frequencies on the space of the g-regions, we successively define:

gm· =
∑
i∈Im

pi· =
Nm·
N··

gm|j =
∑
i∈Im

pi|j =
Nm,j
N·j

(61)
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g~m· = (g1·, · · · , gm·, · · · , gM ·) g~m|j = (g1|j , · · · , gm|j , · · · , gM |j) (62)

pi·|m =
pi·
gm·

1I{i∈Im} =
Ni·
Nm·

1I{i∈Im} pi|j,m =
pi|j

gm|j
1I{i∈Im} =

Nij
Nm,j

1I{i∈Im} (63)

This regrouping may also be viewed in terms of a cluster scheme of areas, C = {I1|C , · · · , Im|C , · · · , IM |C},

consisting of disjoint regional clusters:

ΩIm|C =
⋃

i∈Im|C

Ωi with

M⋃
m=1

ΩIm|C = Ω (64)

Thus, when we want to make explicit the role of a particular cluster scheme C, we also write, instead of

gm·:

gm·|C = g(ΩIm|C ) =
∑

i∈Im|C

pi·

5.2 A structural model

We now introduce a model aimed at representing how the data have been generated and eventually may be

interpreted; the notation eventually distinguishes unknown parameters, in Greek letters, and functions of

data (estimators or statistics) in Latin letters although we also use Greek letters with hat for estimators.

We start with an arbitrary cluster scheme C = {I1|C , · · · , Im|C , · · · , IM |C}.

The stochastic model involves three categorical random elements, namely: regions (i), activity (j) and

cluster (m). When drawing randomly a economic unit u from the universe U , we therefore need to specify

a trivariate distribution πi,j,m. The process is decomposed as follows:

1. individual u selects an activity j according to a distribution π·j·;

2. conditionally on j, individual u selects a cluster m according to a distribution γm|j;C ;

3. conditionally on (j,m), individual u selects a region Ωi within cluster ΩIm|C according to a distribu-

tion ρi|j,m;C .

In short, we consider as structural the following decomposition:

πi,j,m|C = π·j· γm|j;C ρi|j,m;C i ∈ Im|C (65)

Notice that, from (64) we have

πi·|j =
πi,j,·
π·,j,·

γm|j;C =
∑

i∈Im|C

πi|j γm|C =
∑

i∈Im|C

πi·· (66)

In next subsection we design a procedure for identifying specialized agglomeration, by means of a cluster

scheme C different for each activity j. Therefore, we do not discuss the specification of π·j and conduct

the whole analysis conditionally on j.
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The concept of specialized agglomeration is to be built progressively. As a first step, we use, as an

hypothesis maintained throughout this work:

Hm : ρi|j,m;C = ρi|m;C with
∑

i∈Im|C

ρi|m;C = 1 (67)

This hypothesis of conditional independence, namely i⊥⊥j | m;C, means that once an individual has selected

an activity j, he selects a cluster m likely to be suitable for his activity j and when, conditionally on his

choice (j,m), he selects a region, within the cluster m, he considers that within ΩIm|C the regions exert an

attraction independent of his sector of activity. Moreover, because:

ρi|m;C =
πi··
γm|C

, (68)

the maintained hypothesis also assumes that the attractivity of region i, within cluster m, only depends

of its general (or marginal) size πi··, relatively to the cluster size, γm|C . Thus in (68) all the activities are

taken into account through πi·· =
∑
j πij·; in other words the role of πi·· in ρi|m;C is to provide a proxy for

the set of characteristics of region i being favorable to the development of an activity in general. Under

our maintained hypothesis we have:

πi,m|j;C = γm|j;C ρi|m;C ∀i ∈ Im|C (69)

The algorithm, to be sketched in Section 5.4, provides a flexibility to adjust the regions to be taken into

account when modeling a particular activity j; thus, for a given j it may be specified that only the regions

with Nij > 0 or only the regions with Nij larger than some pre-specified limit will be the object of modeling.

For a particular activity j we eventually have Ij regions to be taken into account and we define an Aj × Ij
matrix Xj = [xuij ] where i = 1, · · · , Ij in columns and u, in rows, runs over the set Aj of the economic

units entering the relevant regions for the analysis of the activity j with Aj = #(Aj). As Xj is an incidence

matrix with elements equal to xuij for u ∈ Aj , the sum of each row is equal to 1.

From now on, we explicitly write that the number of clusters depends on the cluster scheme under

consideration; thus we shall write M(C) instead of M . It is shown, in Haedo and Mouchart (2015), that

the probability of the data matrix Xj may be factorized into:

p(Xj | C) =

 ∏
1≤m≤M(C)

γ
Nm,j|C
m|j;C

 · [ b(Xj) ] (70)

where

Nm,j|C =
∑

i∈Im|C

Nij b(Xj) =
∏

1≤m≤M(C)

∏
i∈Im|C

ρ
Nij

i|m;C (71)

As the parameter of the factor b(Xj) does not depend on j, we may factorize the likelihood function as

L(Xj | C) = L1(γ~m|j;C | Xj) L2([ρi|m;C ] | Xj) (72)
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5.3 The concept of specialized cluster in a structural model

Now we want to identify specialized clusters relatively to a specified activity j. Here a cluster Im is over-

specialized (resp. under-specialized) with respect to activity j when the πi|j ’s for i ∈ Im are significantly

greater (resp. smaller) than the country-wide average πi· (remember that πi· is an average of the πi|j ’s, i.e.

πi· =
∑
j πi|j π·j) and in view of (13) this is equivalent to the location quotients being significantly larger,

or smaller, than 1. Under the maintained hypothesis (67), it may be seen from (70) that the identification

of specialized clusters and the construction of a cluster scheme C of specialized clusters is to be based on

the properties of γm|j;C .

A (fully) non-specialized cluster Im is a cluster where LQij = 1 for ∀i ∈ Im (equivalently, πi|j = πi· or

πj|i = π·j). This hypothesis, extended to each cluster m, i.e. LQij = 1 ∀i ∈ I, implies, because of (66):

H0 : γ
(0)
m|j;C = γ

(0)
m|C m = 1, · · · ,M (73)

This hypothesis means that for the activity j and for the cluster scheme C, there is no industrial concen-

tration on the whole country. The maximum likelihood estimation under H0 is therefore:

γ̂
(0)
m|j;C = γ̂

(0)
m|C =

Nm·|C

N··
(74)

The absence of industrial concentration for activity j, underlying (74), is relative to a particular cluster

scheme C. The estimated log likelihood under H0 is

ln L̂(0)(Xj | C) =
∑

1≤m≤M(C)

Nm,j|C ln

(
Nm·|C

N··

)
+ ln a(Xj) (75)

where a(Xj) corresponds to the term L2([ρi|m;C ] | Xj) in (72) and gathers the terms unaffected by the

null hypothesis. As an alternative hypothesis H1, the parameter γm|j;C is left unconstrained and maybe

estimated as

γ̂
(1)
m|j;C =

Nm,j|C

N·j
(76)

Thus when the alternative hypothesis is assumed for each cluster Im of a cluster scheme C, the estimated

log likelihood under H1 is

ln L̂(1)(Xj | C) =
∑

1≤m≤M(C)

Nm,j|C ln

(
Nm,j|C

N·j

)
+ ln a(Xj) (77)

It is shown in Haedo and Mouchart (2015) that the log-likelihood-ratio statistic to test H0 against H1,

under Hm may be written as:

T (Xj | C) = 2

 ∑
1≤m≤M(C)

Nm,j|C ln

(
Nm,j|C/N·j

Nm·|C/N··

) = 2 N·jd(p~m|j | g~m·) (78)

where d(· | ·) is the (non-symmetric) Kullback-Leibler divergence between two distributions. Therefore, the

test statistic (78) may be viewed as a measure of relative industrial concentration of activity j among the
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clusters (more on this concept in Haedo and Mouchart 2012). Note that the argument of the logarithms

in (78) is the location quotient obtained after clustering the regions. Notwithstanding the existence of ag-

glomeration economies, economic units’ location decision is modeled as independent of these agglomeration

economies as the model is essentially a static one that does not present the dynamics of agglomeration

formation. The weight Nm,j|C in (78) of the logarithm of LQ may be viewed as a solution to a small areas

problem in line with the works of Moineddin et al.(2003), O’Donoghue and Gleave (2004) and Guimarães

et al.(2003 and 2009).

In (73), H0 represents M(C) − 1 restrictions for a fixed j under the condition that the sum in m is

equal to 1. Therefore under H0, the test statistics T (Xj | C) is asymptotically distributed as a chi-square

distribution with M(C) − 1 degrees of freedom. The asymptotic p-value for this likelihood-ratio test is

given by

p− value = 1− FM(C)−1(T (Xj | C)) (79)

where FM(C)−1 denotes the cumulative distribution function for the chi-square distribution with M(C)−1

degrees of freedom. The null hypothesis is rejected when the value of the likelihood-ratio test is sufficiently

large, or when the corresponding p-value is sufficiently small.

5.4 Detecting a specialized agglomerations scheme

Up to now, we have developed a “space free” analysis as long as the labels of the region is arbitrary and

convey no information on the localization of the regions. Now we introduce an idea of distance-based

pattern by means of the concept of agglomerations that are clusters made of neighboring regions. The

simplest case is obtained when neighboring regions is interpreted as contiguous regions. In that case, only

regrouping contiguous regions is of interest; therefore each ΩIm|C should be a connected set of regions. The

contiguity matrix (or weights matrix) W formally expresses the proximity links existing between all pair

of regions. The elements of the I × I-matrix W are obtained as the values of the following function:

w : I × I −→ {0, 1} where w(i1, i2) = 1I{i1 and i2 are contiguous} (80)

Note that W is symmetric (W = W ′) with 1s on the main diagonal and the sum of the rows (or, of the

columns) minus 1 is equal to the number of contiguous regions of each region in the set I. Therefore, the

set of regions contiguous to a cluster Im|C may be written as:

v(Im|C) = {i1 ∈ I \ Im|C | ∃ i2 ∈ Im|C : w(i1, i2) = 1} (81)

Remark on the W matrix. The concept of contiguity underlying (80) deserves to be made more precise.

Contiguity may mean at least one point common in the boundaries of the two contiguous regions, in which

case W is a first order queen weights matrix, or contiguity may mean a partly common frontier with more

than one point, in which case W is a first order rook weights matrix; for more information on weights

matrices see O’Sullivan and Unwin (2010).
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Our final objective is to construct a cluster scheme C made of specialized agglomerations, that maxi-

mizes the heterogeneity among agglomerations up to a penalization on the number of parameters. In this

context, a set of agglomerations is “best” (or, close to best) as long as the agglomerations are the most

different possible for their specialization with respect to activity j. Here, the heterogeneity among clusters

is measured by the divergence d(p~m|j | g~m·), as given in equation (78).

It should be noticed that a particular cluster scheme generates a particular model; indeed, from (65),

a cluster scheme C may be viewed as a model of agglomeration formation. Therefore, selecting a cluster

scheme out of a set of possible schemes may be treated as a problem of model selection. A natural model

selection procedure may be based on the Bayesian information criterion (BIC), that naturally involves the

divergence (78). Thus we consider the optimization problem:

C∗ = arg max
C

BIC(Xj | C) (82)

where, in the max operation, C is running over all possible partitions of I into agglomerations (i.e. cluster

of contiguous regions) and

BIC(Xj | C) = T (Xj | C)− (M(C)− 1) ln (N··) (83)

with T (Xj | C) as defined in (78).

A sketch of the algorithm. The number of possible cluster schemes can be enormous for an even

modest number of basic regions. Thus, it is necessary to consider limited search procedures that yield

reasonable approximations to best cluster schemes. Our approach is essentially an elaboration of the basic

ideas of the scan method proposed by Besag and Newell (1991) in which, given the set of basic regions, we

start with individual regions and progressively add contiguous regions to find the most significant cluster,

evaluating all possible cluster schemes that can be formed from these regions. This algorithm may also be

viewed in the family of hierarchical divisive clustering algorithms (for an interesting synthesis of this topic,

one may consult http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/hierarchical.

html, see also http://nlp.stanford.edu/IR-book/html/htmledition/divisive-clustering-1.html).

Experience suggested that the divisive structure of this algorithm is likely to be suitable for taking due

account of the constraint of contiguity.

For each activity j, we develop a greedy forward algorithm that uses the BIC as a selection criterion.

We start with a baseline configuration, generally made of all regions with Nij > 0; in some cases, we might

also select the regions with Nij larger than some specified minimum. The algorithm generates, in a first

(myopic) version, a sequence of configuration C∗[k] as follows:

Step 0. As an initial step, C∗[0] is the one-term partition:

C∗[0] = Cmax (84)

In this case, BIC(Xj | C∗[0]) = T (Xj | C∗[0]) = 0 , because M(C) = 1 .
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Step 1. The first step chooses the region which forms a separated one region cluster and that

maximizes the value of BIC(Xj | C). There are I possible regions to choose from. For each

cluster scheme under consideration M(C) = 2 as the outcome of this first step is a two clusters

configuration, namely one cluster formed by the chosen region and a second cluster consisting of all

the remaining regions. The second cluster is a “residual” cluster in the sense that it is not composed

of homogenous regions only, as far as specialization is concerned, but rather is to be used as a reservoir

from which a new region will be extracted in the following step. This step is completed by evaluating

BIC(Xj | C∗[1]). If BIC(Xj | C∗[1]) = BIC(Xj | C∗[0]), the algorithm stops.

Step 2. The second step looks for a second region, to be chosen from the I − 1 remaining regions

of the previous step, by maximizing the configuration criteria. Therefore, the outcome of C∗[2] will

depend on the cluster configuration of the previous step C∗[1]. At most three clusters configurations

(M(C) = 3) should have been formed: i) one cluster with the region chosen at the first step; ii)

another cluster with the region chosen at the second step; and iii) a third cluster with the remaining

regions. If however the two regions chosen at the first two steps are contiguous then the number of

clusters is two (M(C) = 2): one with the two chosen regions and the other one with the remaining

regions. If the maximizer does not improve the BIC-criterion of the previous step, the algorithm

stops.

Next steps. Each following step of the algorithm proceeds according to the same structure as that of

step 2. Note that some agglomerations might be contiguous without being merged into a unique one

because of too different values of the location quotients: this is decided through the BIC-criterion

that balances the effect on the divergence against the penalization for the number of parameters, see

equations (78) and (83).

Stopping rule. The algorithm stops when no choice of region from the residual cluster of the preceding

step provides an increase in the criterion. If we write k∗ for the last step before stopping the algorithm,

we simplify the notation by writing C∗ instead of C∗[k∗]. As such, this stopping provides a “myopic”

algorithm that stops once the objective decreases for a first time. The actual stopping rule of the

algorithm is completed so as to protect against the possibility of local optima; more detail are given

in Haedo and Mouchart (2015).

Finally, the Choropleth map of each country shows the over-specialized agglomerations resulting of the

optimal cluster scheme of each activity j separately at last available period.

5.5 Testing the role of contiguity for specialized agglomerations

Consider a cluster scheme that has been observed, or determined, for a given activity j for which there

is some degree of industrial concentration, as measured by an index of relative industrial concentration of
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the form d(p~i|j | pi·). The question is to try to understand why the industrial concentration of activity j

tends to cluster into some agglomerations. As a first step it is natural to ask whether the contiguity among

regions is a significant factor of clustering into over- or under- specialized agglomerations. Indeed, as a

difference from geo-localized data, lattice data provides no information on the intra-regional localizations.

But a major role of contiguity, among regions, in the formation of specialized agglomerations provides

evidence that, for a specific activity, localization economies, inside an agglomeration, have more impact.

Formally, we want to test the null hypothesis that the vector of the location quotients, for a fixed activity

j, is invariant for the group of permutations of its coordinates.

The permutation bootstrap is a standard methodology for facing such a question. Indeed, redistribu-

tions of LQ′s among all regions without replacement has been used when assessing spatial dependence

between neighbouring regions, see e.g. Manly (1991), Zoellner and Schmidtmann (1999), Good (2000)

and Lawson (2006). Each redistribution is simulated independently of the contiguities among regions,

thus independently of the matrix W , and if for each simulation we run the algorithm and compute the

optimal BIC, then we may appreciate where the optimal BIC(Xj | C∗) is localized relatively with the

distribution of the simulated BIC. In particular, one may decide that when BIC(Xj | C∗) is far in the

tail of the distribution of the simulated BIC, it is a signal that contiguity is a significant factor of cluster-

ing. The significance of BIC(Xj | C∗) is accordingly evaluated thought the bootstrap distribution. More

specifically, let us write BICb(Xj | C∗b ) for the BIC of the optimal cluster scheme obtained as a result of

the b-th simulation and F̂BBIC for the empirical distribution function of BICb(Xj | C∗b ) obtained after B

simulations. The empirical p-value of BIC(Xj | C∗) is therefore:

p-value[BIC(Xj | C∗)] = 1 − F̂BBIC(BIC(Xj | C∗))

=
1

B

∑
1≤b≤B

1I{(BICb(Xj |C∗b )>BIC(Xj |C∗)} (85)

Thus the bootstrap p-value is, in general, simply the proportion of the bootstrap test statistics BICb(Xj |

C∗b ) that are more extreme than the observed test statistic BIC(Xj | C∗): rejecting the null hypothesis

whenever p-value [BIC(Xj | C∗)] < α is equivalent to rejecting it whenever BIC(Xj | C∗) exceeds the 1-α

quantile of F̂BBIC .

5.6 The main parameters of the algorithm

The algorithm treats each activity j independently and requires the specification of several parameters.

The main parameters are:

• contiguity matrix: simple first order queen or rook matrix; see Remark on the W matrix in Section

5.4) (selected: rook);

• selection of the regions i:

- either according to Nij : either all regions, or only those with Nij > 0, or only those with Nij > some
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fixed quote; ignoring the regions where Nij = 0 actually accelerates the processing of the algorithm

(selected: Nij > 4);

- or according to the sign of log LQ: all, only this with log LQ > 0 (over-specialized) or only those

with log LQ < 0 (under-specialized), possibly with 0 replaced by + or − ε.

Note: both criterion may be combined or not;

• specification of the total number of primary units to be taken into account in the evaluation of the

criterion: either N· · (coded as δ TRUE), or the sum of the Nij corresponding to the regions actually

selected in the previous step (coded as δ FALSE). The case “FALSE” actually ignores the unselected

regions although present in the country (selected: δ = TRUE);

• parameter “sign”: “sign” = TRUE when the agglomerations contain only regions with a same sign

of the log LQ, i.e. only over-specialized or only under-specialized regions, otherwise “sign” is FALSE

(selected: sign = TRUE; more explicitly: if i∗[1] and i2 are aggregated into a same cluster, then the

log of the location quotients LQi∗
[1]
,j and LQi2,j have the same sign; i.e. both regions i∗[1] and i2 are

either over-specialized or under-specialized).

Note: the parameter “sign” is activated at each step of the algorithm but if, in the second parameter,

the regions have been selected on the sign of log LQ, the parameter “sign” is always TRUE;

• number of bootstrap replications (selected: B = 1000);

• criterion: BIC or AIC (selected: BIC);

• two parameters for the stopping rule:

- firstly a selection between stopping according to a change of sign in the trajectory of the criterion

or according to the local slope of the trajectory of the criterion (selected: change of sign);

- secondly the width of the window within which is evaluated the change of sign or the slope of the

criterion (selected: h = 60).

5.7 Manufacturing competitiveness

For each region i of a country, a composite manufacturing competitiveness index, Mc[i·], may be evaluated

as follows:

Mc[i·] = NMaler[i·] +NMqler[i·] +NMl[i·] +NMp[i·] +NMre[i·][Meuij ] +NMre[i·][Memij ] +NMae[i·]

(86)

where NMre[i·] is the regional specialization of regions i (15) based on manufacturing economic units

[Meuij ] and manufacturing employment [Memij ] and Mae[i·] is the number of over-specialized agglomer-

ations Im|C of all activities j of which region i is a part (for more details see Section 5).
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In the composite Mc[i·] index, the indicator Mp[i·] may be reclassified as follows:

2 = when Mp[i·] = 1 or Mp[i·] = 3;

1 = when Mp[i·] = 2 or Mp[i·] = 5;

0 = when Mp[i·] = 4 or Mp[i·] = 6.

Finally, every indicator of the composite Mc[i·], generically named X[i·], may be normalized as follows:

N(X[i·]) =
X[i·] −min{X[i·]}

max{X[i·]} −min{X[i·]}
× 100 (87)

Thus, each indicator is bounded between 0 and 100 points, while the Mc[i·] is bounded between 0 and

700 points.

The Choropleth map of each country shows the values of Mc[i·] at last available period, aggregated into

three classes: high, medium and low, using the Jenks Natural Breaks classification method.

For international comparisons, the Mc[i·] has been computed for the global country simply dividing it

by the number of regions i with al least one economic unit.

6 A retrospective view

This Atlas gathers a set of several contributions. As a first step, data are collected for a number of countries

of this continent. These data refer basically to the employment and the firms in the manufacturing sectors.

This process is continuously ongoing as long as data for new countries are still in the process of collection.

Then, the collected data are scrutinized for evaluating the design of the collecting process and thereafter

summarized by means of a set of (rather standard) descriptive measures and of illustrative maps. This

Atlas also makes original contributions in the field of detecting relatively specialized groups of regions

and/or activities, for which two innovative algorithms are used.

A first algorithm, to be called the Agglomerative Algorithm (AgA), constructs a partition of the regions

into agglomerations, i.e. clusters of contiguous regions, characterized by a property of relative specialization

with respect to a particular activity. A second algorithm, to be called a Bi-clustering Algorithm (BcA),

proposes a simultaneous regrouping of regions and activities with an objective of a better synthetic view

of the regional manufacturing structure of an economy.

These contributions have lead to a number of insightful developments. Of particular interest is com-

paring the spatial structure of a given activity in different countries or of different activities in a given

country.

AgA has been shown to be particularly well suited for comparing the spatial structure of a given activity

in different countries or of different activities of a given country:
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• The final bootstrap step of AgA has been used to analyze more in depth the role of contiguity in

the formation of agglomeration, in particular for evaluating the presence of intra- or inter-regional

localization economies.

• The agglomerations identified, for a given activity, by AgA have been compared in terms (i) of the

dimension of firms, (ii) of the distribution of activities within the agglomeration, (iii) of the intensity

of the specialization of the agglomeration, in terms of the average of the location quotients LQij of

the agglomeration or in terms of the global LQij of the agglomeration or of the log of the location

quotient weighted by the corresponding Nij , (iv) of the other activities where the agglomeration is

also specialized .

Given that the set of activities is the same for every country, BcA allows one to compare the best collapsed

tables for two countries following one of two complementary strategies. A first one considers every g-

region with all activities and compute the discrepancy between the activity distributions for every pair of

g-regions. A second strategy is based on an ordering of the activities for each g-region and evaluates a

rank correlation for the activities of every pair of g-regions. The ordering of the activities may be either

the order of the weight of the activities or the intensity of the specialization of each activity within each

g-region.
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